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Abstract

Despite recent advances in the treatment of advanced prostate cancer (PCa), metastatic castrate-resistant PCa remains incurable at this
time. The androgen receptor (AR) plays a key role in the development and progression of PCa, continuing to be active in most patients even
after the development of castration resistance. Here, we aim to more closely review the mechanisms by which AR signaling is maintained,
including AR overexpression/overamplification, intracrine androgen synthesis, AR mutations, and the development of AR splice variants.
We also review therapies targeting each of these mechanisms. We also discuss the potential role of AR-CAG repeats and AR splice variants
as potential biomarkers of response to hormonal manipulation therapies. Published by Elsevier Inc.
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Introduction

Prostate cancer (PCa) is currently the second most
common cancer affecting men in the world [I]. It is
estimated that there will be approximately 220,800 new
cases diagnosed, and 27,540 deaths from PCa in 2015 in the
United States alone [2]. Most patients with PCa are
diagnosed with localized disease. Management at this stage
includes radical prostatectomy, radiation therapy, active
surveillance, or combined approaches including concurrent
hormonal therapy with radiotherapy. The 5-year overall
survival in patients with localized or regional disease is
excellent, approaching 100%. However, for patients with
metastatic disease, the prognosis is dramatically different,
with an estimated 5-year overall survival of 28% [2].
Management at the metastatic stage requires systemic therapy
most commonly using hormonal, chemotherapeutic, immu-
notherapeutic manipulation, or a combinatorial approach.

PCa growth and proliferation is primarily dependent on
androgens, and androgen deprivation therapy (ADT) is an
effective means of controlling the disease. Eventually,
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however, all men develop resistance to androgen depriva-
tion, resulting in the development of castration-resistant
PCa (CRPC). CRPC remains the lethal form of PCa.
Although, to some, the term CRPC may connote a
“hormonally refractory” state, recent studies have shown
that further hormonal manipulation can result in impressive
disease control even after progression on ADT, and thus,
many patients with CRPC would respond to further
hormonal manipulation [3-5].

To best understand how CRPC can respond to further
hormonal interventions, it is important to recognize that the
development of PCa and CRPC results from a multistep
process in which androgen receptor (AR) signaling plays a
key role. For most patients, AR signaling remains the
primary oncogenic driver despite castrate testosterone
levels, and its activation has been observed to be mediated
through a multitude of mechanisms [3,6,7]. In this article,
we review the major mechanisms through which AR
signaling is sustained, including AR gene amplification
and overexpression, AR mutations, constitutively active AR
splice variants, and intratumoral androgen synthesis. Lastly,
we explore the role of the emerging field of CAG repeats
within the AR gene and its influence on oncogenesis and
disease progression.
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The AR

AR is located on chromosome Xq11-13 and is a ligand-
dependent transcription factor with multiple functional
domains. The NH,-terminal domain (NTD) acts as a tran-
scriptional activation domain responsible for the most AR
transcriptional activity. The central domain of the AR is the
DNA binding domain, made up of 2 zinc-finger motifs. This
is followed by a short, flexible, hinge sequence responsible
for nuclear localization upon activation. The COOH-
terminal domain of the AR is home to the ligand binding
domain (LBD) and comprises the remainder of the AR
transcriptional activity [8]. In the absence of androgens, AR
remains bound in an inactive state in the cytoplasm by heat
shock proteins. Upon ligand binding, AR undergoes a
conformational change exposing its nuclear localization
hinge region. This prompts translocation of the bound
complex to the nucleus [9,10]. Within the nucleus, the
AR DNA binding domain interacts with androgen-response
elements to recruit transcriptional coregulators and begin
transcription [9,11].

In normal tissue, transcription of these downstream
genes helps maintain appropriate architecture and physio-
logic function of the prostate. However, in PCa, repetitive
transcription of these downstream targets serves to promote
cancer cell survival and proliferation. One such gene
product is prostate-specific antigen (PSA), which, although
not directly linked to cell survival, is nonetheless a helpful
serum biomarker to monitor disease activity.

Existing hormonal therapies have been developed with
the aim of decreasing circulating androgens to decrease AR
signaling and decrease PCa cells' ability to thrive. This
ADT is typically achieved either by orchiectomy or, more
commonly, medical castration with leuteinizing hormone-
releasing hormone therapy.

Although surgical or medical castration initially works in
the vast majority of patients with PCa, the cancer eventually
develops resistance to ADT. Although resistance to ADT
was initially thought to represent a hormone-refractory
state, recent evidence indicates androgen signaling is crucial
to the survival of most CRPC cells. Here, AR signaling is
preserved and sustained through AR overexpression or
overamplification, intracrine androgen synthesis, AR muta-
tions, and other aberrant signaling patterns, including the
development of AR splice variants (Fig.). This review takes
a deeper look at each of these mechanisms to better
understand how androgen signaling is maintained in the
castration-resistant state, and to discuss novel therapies that
target this aberrant signaling. It should be noted that there
are a number of new therapies approved or in development
including immunotherapy (Sipuleucel T, ProstVac, and
Ipilumumab), radiopharmaceuticals (Radium-223), and che-
motherapy (docetaxel and cabazitaxel). Although each of
these has activity in advanced PCa, none specifically targets
AR signaling as its sole mechanism of action, and would
therefore not be covered in this review.

AR overexpression and intratumoral androgen
synthesis

The term CRPC is relatively recent. In past years, PCa
that progressed despite ADT was described as “androgen-
independent” PCa or “hormone-refractory” PCa, implying
that tumor growth occurred via completely androgen-
independent pathways. In 1997, Koivisto et al. evaluated
AR gene amplification and mRNA expression in the tumors
of 54 men who had failed primary ADT. A total of 26 of
these patients had paired primary tumor samples available
for analysis. Approximately 30% of the “therapy-resistant”
tumors exhibited both wild-type AR gene amplification and
substantially elevated AR mRNA levels, raising the possi-
bility that androgen signaling was still playing an important
role. Interestingly, the primary tumor in these patients, and
untreated patients, did not exhibit AR gene amplification,
suggesting evolution of these tumors over time in response
to castrating therapy [12,13]. Multiple studies since this
landmark study have confirmed increased levels of AR
mRNA, AR protein, and amplification of the AR gene in
CRPC tumors [12,14-19]. This elevation in AR copy
number is thought to help increase AR sensitivity to the
low levels of circulating androgens present in the castrate
setting to maintain AR signaling. A possible scenario for
this evolution is that most primary tumor cells respond to
ADT, however, a small pre-exisiting population of cells
with amplified ARare selected based on their ability to grow
in the castrate environment and thereby create a clonal
population of tumor cells that are able to maintain AR
signaling. An alternative hypothesis posits that AR ampli-
fication and overexpression evolves in AR copy-normal
cells in response to castrating therapy, conferring a sur-
vival advantage in the androgen-depleted environment,
and clonal selection then proceeds in a Darwinian-like
manner.

Another documented mechanism through which tumors
can acquire resistance to ADT and increase sensitivity to the
low level of circulating androgens available after ADT
is via local, intratumoral autocrine androgen synthesis
[20-22]. In a study by Page et al., 13 men with PCa received
ADT and were compared with patients receiving a placebo
control, and all had intraprostatic androgen levels measured.
The men receiving ADT showed 94% reduction in serum
testosterone, but only a 70% and 80% respective decrease in
intraprostatic levels of testosterone and dihydrotestosterone
(DHT) [22]. DHT, the active metabolite of testosterone, is
synthesized through enzymatic reduction via So-reductase,
and is known to be a more potent androgen than testosterone.
CRPC has been found to overexpress Sa-reductase, suggest-
ing that the tumor attempts to increase sensitivity to
androgens by converting testosterone to its more potent form
of DHT [21]. Intratumoral androgens are also synthesized
from precursors such as cholesterol and dehydroepiandros-
terone, similar to their synthesis in the adrenal gland.
Compared to their primary counterparts, CRPC tumors
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Fig. Depiction of mechanisms of resistance to androgen deprivation therapy addressed in this review: AR amplification, increased intratumoral androgen
synthesis, hypersensitivity of AR, mutations of AR, and alternative splicing of AR to constitutively active splice variants. (Color version of figure is available

online.)

were found to have increased expression of steroidogenic
enzymes, including CYP17A1 [21,23].

Targeting androgen synthesis

AR amplification/overexpression and increased intratu-
moral androgen synthesis serve to increase the sensitivity of
AR to the lower levels of circulating androgens present after
primary ADT. This mechanism of resistance allows tumors
to continue using their main signaling pathway (AR signal-
ing) to grow in a castrate environment. This understanding
has helped spur the development of a number of therapies
given after the failure of initial castrating therapy that
actively target these mechanisms.

Ketoconazole

Ketoconazole is perhaps the oldest of these “secondary
hormonal therapies” that decrease AR signaling in the
castrate environment. Ketoconazole is an antifungal drug
designed to disrupt fungal cell wall synthesis by inhibiting
multiple enzymes involved in cholesterol metabolism.
Interestingly, in humans, cholesterol is the major building
block for adrenal hormones including cortisol, aldosterone,
and the androgens. A major side effect of ketoconazole,

therefore, is adrenal insufficiency, which is due to inhibition
of multiple CYP enzymes involved in cortisol and androgen
synthesis, including CYP17 [24]. Therapeutically, ketoco-
nazole was evaluated in a large, randomized phase III trial
lead by Small et al. This study evaluated the utility of
antiandrogen withdrawal therapy vs. ketoconazole in men
with newly diagnosed CRPC and showed a significant
difference in PSA response (P = 0.002) between those on
ketoconazole (27%) vs. antiandrogen withdrawal therapy
alone (11%), indicating activity of this agent in PCa [25].

Abiraterone acetate

More recently, abiraterone acetate was specifically
developed to act as a potent, selective inhibitor of
CYP17A1, which converts pregnenolone and progesterone
to 170H-Pregnenolone and 170H-Progesterone, respec-
tively, during androgen biosynthesis. Unlike ketoconzole,
abiraterone does not affect other CYP enzymes, which is
thought to lead potentially to improved efficacy (although
the 2 have never been compared in a head-to-head clinical
trial) and less off-target effects [26]. Notably, while
abiraterone dramatically decreases androgen synthesis,
blockade of CYP17 also decreases cortisol synthesis, and
like ketoconazole, leads to adrenal insufficiency. Initial



4 A. Anantharaman, T.W. Friedlander / Urologic Oncology: Seminars and Original Investigations 1 (2015) 1-12

development of abiraterone acetate was stymied by both
this and compensatory mechanisms leading to increased
mineralocorticoid synthesis. This hurdle was overcome in
clinical trials through the addition of low-dose prednisone
(5-10 mg daily) to abiraterone acetate, which both replaces
the lost cortisol and abrogates the mineralocorticoid excess.

Abiraterone was shown to have activity including
dramatic PSA declines and objective radiographic responses
in phase I and phase II studies [27-29]. A randomized
phase III study in patients with docetaxel-refractory meta-
static CPRC (mCRPC) (COU-AA-301) compared abirater-
one plus prednisone with prednisone alone, and showed
increased median overall survival (15.8 mo [95% CI: 14.8—
17.0] vs. 11.2 mo [10.4-13.1]; hazard ratio [HR] = 0.74;
95% CI: 0.64-0.86; P < 0.0001), progression-free survival
(8.5 mo, 95% CI: 8.3-11.1, in the abiraterone group vs.
6.6 mo, 5.6-8.3, in the placebo group; HR = 0.63; 0.52-
0.78; P < 0.0001), and PSA response (235 [29.5%] of 797
patients vs. 22 [5.5%] of 398; P < 0.0001) [30,31] in
patients treated with abiraterone. A second phase III trial in
patients with docetaxel-naive CRPC (COU-AA-302) lead
by Ryan et al. [5,32], revealed similar benefits of increased
overall survival (34.7 mo [95% CI: 32.7-36.8] vs. 30.3 mo
[28.7-33.3]; HR = 0.81 [95% CI: 0.70-0.93]; P = 0.0033)
with abiraterone therapy.

Orteronel, galeterone, and VT-464

Orteronel (formerly TAK-700) was designed to be a
CYP17A inhibitor with stronger selectivity for inhibition of
17, 20-lyase with the goal of reducing the off-target effect
on mineralocorticoid production compared with that of
abiraterone acetate. In a phase I/Il dose escalation trial,
orteronel strongly suppressed testosterone production and
PSA declines of greater than 50%, which were observed in
approximately 52% of patients [33]. This trial was done
without prednisone supplementation given its specificity in
mechanism of action. However, adrenocorticotropic hor-
mone stimulation tests demonstrated blunted responses in
patients, suggestive of impaired cortisol production, imply-
ing that a low dose of prednisone would be required in
further studies.

Despite early optimism, an interim analysis of data from
a phase III trial of orteronel plus prednisone vs. prednisone
alone in patients with mCRPC, who progressed after
chemotherapy (ELM-PC 5) suggested that the trial would
not meet its primary endpoint of increasing overall survival
and the trial was halted [34]. Whether this was because of
the absence of biologic activity of orteronel in CRPC or
because of the fact that a substantial number of patients in
the control arm subsequently received abiraterone acetate
remains unclear. A phase III trial (ELM-PC 4) evaluating
orteronel plus prednisone vs. prednisone in the
chemotherapy-naive population was recently published,
and although it did not demonstrate a significant improve-
ment in overall survival, a significant improvement in

radiologic progression-free survival was observed. The
median radiographic progression-free survival was 13.8
months (95% CI: 13.1-14.9) with orteronel plus prednisone
and 8.7 months (8.3-10.9) with placebo plus prednisone
(HR = 0.71; 95% CI: 0.63-0.80; P < 0.0001) [35]. The
median overall survival was 31.4 months (95% CI: 28.6—
not estimable) with orteronel plus prednisone and 29.5
months (27.0-not estimable) with placebo plus prednisone
(HR = 0.92; 95% CI: 0.79-1.08; P = 0.31) [35]. Based
on these phase III studies, the development of orteronel in
mCRPC has been discontinued, although it is currently
under evaluation in a Southwest Oncology Group random-
ized study of ADT plus bicalutamide vs. ADT plus
orteronel in men with newly diagnosed, hormone-sensitive,
metastatic disease (Southwest Oncology Group 1216).

Galeterone is designed to be a potent antiandrogen agent
that targets the following 3 different blocking androgen
signaling: CYP17 inhibition, direct AR inhibition, and AR
degradation via ubiquitin-mediated mechanisms. The phase
I (ARMORV1) trial demonstrated that 22% of patients treated
with galeterone (without prednisone supplementation) had
PSA declines of >50% [36]. Results from the phase II
(ARMOR?2) study have recently been presented at European
Society for Medical Oncology and American Society of
Clinical Oncology meetings. The best response was dem-
onstrated in patients with metastatic disease, who were
otherwise treatment naive (n = 36). PSA declines of 30%
and 50% were achieved in 89% and 81% of patients,
respectively [37]. Excitingly, inhibition of CRPC tumors
harboring putative splice variants (to be discussed later) was
observed in analysis of circulating tumor cells (CTCs) taken
from patients under ARMOR?2 study. In this analysis, an
AR C-terminal truncation in CTCs was hypothesized to
indicate the presence of AR splice variants, specifically AR-
V7 [37]. PSA declines of >50% were observed in all 4
patients harboring C-terminal truncations, suggesting activ-
ity of galeterone in patients harboring splice variants. This
is an intriguing finding as recent work has suggested that
neither abiraterone acetate nor enzalutamide have signifi-
cant activity in this population [38]. Based on this obser-
vation, galeterone would be compared to enzalutamide in a
phase III study randomizing men with mCRPC with
identified AR-V7 variant.

VT-464 is another CYP17 inhibitor more specific for 17,
20-lyase, which showed promise in preclinical studies
[39,40]. The phase I trial presented at American Society
of Clinical Oncology genitourinary symposium in 2015
demonstrated 19 of 26 patients had at least 30% reduction
in PSA [41]. Interestingly, the preliminary results and some
preclinical data suggest stronger potency in patients pre-
viously treated with abiraterone or enzalutamide [40,41].
Phase 2 studies are currently ongoing at this time.

Of note, AR amplification may itself serve as a bio-
marker of clinical outcomes. A recent study published
by Azad et al. [42] used cell-free DNA analyses from
patients treated with either enzautamide or abiraterone to
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demonstrate that patients with an AR gene aberration,
defined as copy number variation or mutation in exon 8§,
had poorer clinical outcomes, lower rates of PSA decline,
and shorter time to progression. Another study by Salvi
et al. [43] demonstrated similar results when looking at AR
copy number variation and mutations in the CYP17A gene
in patients treated with abiraterone.

AR mutation and splice variants

Like many other receptors, the AR has a certain level of
promiscuity. This is often enhanced or diminished by
mutations within the gene, allowing for activation by
weaker androgens such as dehydroepiandrosterone, estro-
gens/progesterone, or even cortisol [44,45]. It has been well
established that the presence of mutations within AR is
more prominent in advanced CRPC compared to primary
tumors, conferring a survival advantage for these cells
[8,44,46-49]. A database has been created identifying a
number of substitutions occurring in AR (http://androgendb.
mcgill.ca/), some of which have identifiable consequences.
Mutations can result in the conversion of AR antagonists
(bicalutamide, nilutamide, and filutamide) to agonists
[50,51]. More recently, Azad et al. [42] identified novel
mutations conferring resistance to enzalutamide (F876L)
and abiraterone (H874Y and T877A). A few mutations,
including the T877A mutation, have been shown to con-
stitutively activate AR. Others occurring at the NTD or in
the DNA binding domain, alter the binding specificity of
coregulators promoting transcriptional activation of down-
stream genes [52—55]. Truncated forms of AR, lacking its
carboxy-terminal region, seem to confer a paracrine effect
generating clonal cooperation with neighboring PCa cells,
possibly aiding in both invasion and metastatic potential of
the tumor [54].

Antiandrogens: Bicalutamide, flutamide, nilutamide, and
enzalutamide

Antiandrogens are a class of drugs, which have been
established as potent therapeutic agents in the treatment of
PCa for over 40 years [56]. They bind to the LBD of the
AR through competitive inhibition of testosterone and the
more potent DHT. Flutamide was the first antiandrogen
approved for use in management of advanced PCa by the
late 1970s/early 1980s [57-59]. Bicalutamide was devel-
oped thereafter and found to be significantly more potent
than flutamide with a much improved side effect profile,
making it the preferred antiandrogen by the mid-1990s
[60,61]. Nilutamide was developed around the same time
and was shown to be relatively well tolerated as well [62].
More recently, enzalutamide has joined, and possibly
superseded this class of agents. Enzalutamide has been
shown to have more than 5-fold greater affinity for AR than
bicalutamide and works via 2 different mechanisms of

action. In addition to competitive inhibition of the AR,
enzalutamide impairs AR nuclear localization and has been
shown to cause a conformational change in AR impairing
DNA binding and cofactor recruitment [63]. After promis-
ing data from phase I and phase II studies [64], the phase IIT
AFFIRM trial comparing enzalutamide to placebo in the
postchemotherapy setting revealed significant improvement
in overall survival during interim analysis; the median
overall survival was 18.4 months (95% CI: 17.3 to not
yet reached) in the enzalutamide group vs. 13.6 months
(95% CI: 11.3-15.8) in the placebo group (HR for death in
the enzalutamide group, 0.63; 95% CIL: 0.53-0.75;
P < 0.001) [65]. The phase III PREVAIL trial followed
soon thereafter evaluating enzalutamide vs. placebo in the
prechemotherapy setting in patients with mCRPC. Interim
analysis, again, showed significant improvement in overall
survival, and significant improvement in radiographic
progression-free survival at 12 months—65% of those
treated with enzalutamide compared with 14% for
patients who received placebo (81% risk reduction; HR in
the enzalutamide group, 0.19; 95% CIL: 0.15-0.23;
P < 0.001) [4].

In a similar study, the TERRAIN trial compared
enzalutamide to bicalutamide in patients with mCRPC,
who were receiving ADT. In patients with measurable soft
tissue masses, objective tumor response rates were 54% in
patients taking enzalutamide, and 11% in patients taking
bicalutamide [66]. As with bicalutamide, there is a concern
that enzalutamide could potentially cause a tumor flare after
withdrawal of the agent because of compensatory increase
in testosterone. Long-term follow-up is still ongoing at
this time.

Outside the CRPC setting, a single-arm, phase II study
was conducted to evaluate the use of enzalutamide as
monotherapy instead of ADT. Response rates, determined
by PSA decline and radiographic response were consistent
between ADT (>80%) and enzalutamide (92%). Short-
term adverse events were comparable as well [67].
Although intriguing, these data do not yet support the
routine use of enzalutamide monotherapy in place of ADT,
and further clinical trials are needed to demonstrate com-
parability in terms of long-term outcomes.

The fact that both enzalutamide and abiraterone are well
tolerated and are both approved for men with mCRPC
raises the question of whether combination therapy is
better than sequential therapy. To this point, there has been
only modest activity observed of enzalutamide in men
with abiraterone-refractory disease, and similarly of
abiraterone in men with enzalutamide-refractory disease.
To determine whether combined targeting of the AR
would provide synergistic clinical activity compared
with monotherapy, there is an ongoing open-label,
randomized phase III study conducted by the Alliance
for Clinical Trials Cooperative Group evaluating enzalu-
tamide vs. enzalutamide in combination with abiraterone
(NCT01949337).
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Newer antiandrogens: ARN-509 and ODM-201

Other AR antagonists are currently under evaluation.
ARN-509 is a selective AR antagonist, lacking agonistic
activity. It has demonstrated greater specificity and potency
than enzalutamide in preclinical studies [68]. Preliminary
results from the phase II portion of the phase I/II trial
revealed an excellent response rate, with 88% of men with
mCRPC, who are chemotherapy- and abiraterone-naive
experiencing PSA declines of greater than 50%; 29%
percent of men with mCRPC pretreated with abiraterone
experienced a similar response. ARN-509 appears to be
overall very well tolerated [26,69] with mostly hormonal
side effects similar to enzalutamide, and less commonly
gastrointestinal side effects. Studies of ARN-509 in combi-
nation with abiraterone acetate and other compounds are
currently ongoing. A phase I study of ARN-509 given with
abiraterone acetate has shown that the combination is well
tolerated [70]. A phase III randomized, placebo-controlled,
double-blind study of ARN-509 in combination with
abiraterone in men with chemotherapy-naive mCRPC is
set to enroll patients in 2015 (NCT02257736). There is also
a phase III study (SPARTAN) ongoing to evaluate
metastasis-free survival using ARN-509 in combination
with ADT vs. ADT given with placebo (NCT01946204)
in men with non-metastatic CRPC. ARN-509 is also under
investigation as monotherapy or in combination with
Lupron for men with biochemical recurrence after surgery
or radiation, to see if quality of life and metabolic side
effects, including changes in bone mineral density, choles-
terol, and whole-body muscle and fat composition are
better compared with those of Lupron monotherapy
(NCT01790126).

ODM-201 is another AR antagonist currently being
evaluated in phase I/II trials. This is a new generation AR
inhibitor developed specifically to target CRPC. Its struc-
ture is distinctly different from enzalutamide and has a high
binding affinity, which prevents AR nuclear localization.
Preclinical studies suggest this may have a higher affinity
for binding AR than bicalutamide, enzalutamide, and ARN-
509, with excellent potency in VCaP cells [71,72]. The
ARADES trial evaluated its safety/tolerability and response
rate in an open-label phase I/II trial. The results suggested
ODM-201 monotherapy in patients with mCRPC may lead
to disease suppression (29%-33% of men in all dosage
arms had PSA declines of greater than 50% at 12 wk) [71].
Table 1 summarizes major phase III trials investigating
secondary hormonal agents discussed above.

AR splice variants

Alternative splicing is a regulated process in healthy
cells, which allows a single gene to code for multiple
proteins by using different combinations of exons and
introns during gene expression. Splice variants are active
mRNA products resulting from alternative splicing. Several

AR splice variants have been identified, some with signifi-
cant clinical implications. Whether these have a role in
normal AR physiology is not well understood. Approxi-
mately 20 different AR splice variants have been identified
in PCa cell lines, models, and clinical tumors [73]. Splice
variants have drawn more attention for their clinical
relevance in recent years when several were discovered to
lack the LBD compared with full length AR (AR-FL)
[73,74]. Lacking the binding domain for androgens sug-
gested that these variants could function in an androgen
autonomous fashion, and in vitro studies had suggested
these truncated variants could potentially have constitutive
activity and AR function [75].

This hypothesis was soon confirmed in a series of studies
between 2008 and 2010, which identified most AR variants
achieved through alternative splicing and cryptic exons
[76=79]. Of these variants, AR-V1, AR-V7/AR3, AR-12/
AR’ and AR-V9 were found to have the most putative
clinical relevance. The mRNA expression of AR-V1 and
AR-V7 were found to be significantly higher in CRPC
compared with that in hormone-naive PCa [77]. Transcript
levels of AR-V1, AR-V7, and AR%7® were also found to
be significantly higher in analyses of CRPC bone meta-
stases compared with those of hormone-naive tumors [80].
AR-V1 and AR-V9 were found to be mainly cytoplasmic
and were described to be conditionally active, rather than
constitutively active, as they exhibited ligand-independent
activity in some cell lines but not in others [81,82]. AR-V7
and AR, however, are constitutively active and con-
sistently exhibit nuclear localization in an androgen-
independent manner [77,83]. Of these 2 splice variants,
more work has been performed analyzing the role of AR-
V7 compared with that of ARY®’®" since it has been
possible to develop a variant-specific antibody and comple-
mentary sequences, which target the AR-V7 variant.

AR splice variants are thought to confer a mechanism of
resistance to both primary and secondary ADT. There is an
increasing evidence that these splice variants can work in
conjunction with full length AR proteins to potentiate AR
signaling, even in the presence of potent antiandrogens such
as enzalutamide [84]. Although AR variants have been
shown to bind to their target DNA sequences without
AR-FL, in the presence of AR-FL, they have been shown
to co-occupy the canonical AR targets with AR-FL in a
mutually-dependent manner. This suggests that AR variants
are capable of controlling the degree of response of AR-FL
to androgen-directed therapy by activating AR-FL in an
androgen-independent manner [84].

Clinically, the presence of AR splice variants has
generated significant interest. A prospective study recently
published by Antonarkis et al. [38] investigated the
correlation between AR-V7 expression in CTCs and treat-
ment response of patients with CRPC treated with either
enzalutamide or abiraterone. Approximately 39% of men
treated with enzalutamide and 19% of men treated with
abiraterone were identified to harbor the AR-V7 variant in



Table

Selected important completed and ongoing phase III trials of secondary hormonal agents in the treatment of prostate cancer

Experimental arm Control arm Name of the Clinical trials Clinical state Prior Overall survival Progression-free survival PSA response
study identifier chemotherapy
Abiraterone acetate and Placebo + prednisone COU-AA-301 NCT00638690  mCRPC Yes 15.8 mo vs. 11.2 mo 8.5 mo vs. 6.6 mo 29.5% vs. 5.5%
prednisone [30,31] (P < 0.0001; HR = 0.74) (P < 0.001; HR = 0.63)" (P < 0.0001)
Abiraterone acetate and Placebo + prednisone COU-AA-302 NCT00887198  mCRPC No 34.7 mo vs. 30.3 mo 16.5 mo vs. 8.3 mo 62 vs. 24
prednisone [5,32] (P = 0.0033; HR = 0.81) (P < 0.001; HR = 0.53)" (P < 0.001)
"Abiraterone acetate and Placebo + prednisone NCT02257736 mCRPC No - - -
prednisone + ARN-509
"ARN-509 Placebo SPARTAN NCT01946204  High-risk, MO Both - - -
CRPC
PARN-509 + ADT ADT + placebo NCTO02489318  Low-vol mHSPC Both - - -
Orteronel and prednisone Placebo + prednisone ELM-PC4 NCTO01193244  mCRPC No 31.4 mo vs. 29.5 mo 13.8 mo vs. 8.7 mo -
(P = 0.31; HR = 0.92) (P < 0.0001; HR =
0.71)
PADT + orteronel ADT + bicalutamide = SWOG 1216 NCT01809691 mHSPC No - - -
Enzalutamide [65] Placebo (*predisone) AFFIRM NCT00974311 mCRPC Yes 18.4 mo vs. 13.6 mo 8.3 mo vs. 2.9°-3.0 mo 54% vs. 2%
(P < 0.001; HR = 0.63) (P < 0.001; HR = 047 (P < 0.001)
HR = 0.25)
Enzalutamide [4] Placebo (*predisone) PREVAIL NCT01212991 mCRPC No At interim analysis, At 12 mo: 65% vs. 14% T8% vs. 3%
estimated: 32.4 mo vs. (P < 0.001; HR = 0.19)* (P < 0.001)
30.2 mo (P < 0.001;
HR = 0.73)
"Enzalutamide + abiraterone Enzalutamide Alliance NCT01949337  mCRPC No - - -
acetate + prednisone A031201
"Enzalutamide ADT ENZAMET NCTO02446405  New dx mHSPC No - - -
ODM-201 Placebo ARAMIS NCT02200614 MO CRPC No - - -
Galeterone Enzalutamide ARMOR3-SV NCT02438007 M1 CRPC (AR- No - - -
V7 + CTCs)

#Use of radiographic data to determine progression. Remainder of data reports PSA progression.

Ongoing trials.
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CTCs. Patients considered positive for AR-V7 had dramat-
ically lower PSA response rates (0% vs. 53%; P = 0.004),
shorter median PSA progression-free survival (1.4 mo vs.
6.0 mo; P < 0.001), shorter median clinical or radiologic
progression-free survival (2.1 mo vs. 6.1 mo; P < 0.001),
and shorter median overall survival (5.5 mo vs. not reached;
P = 0.002). Similarly, among men receiving abiraterone,
patients considered positive for AR-V7 had lower PSA
response rates than patients considered negative for AR-V7
(0% vs. 68%; P = 0.004), shorter median PSA progression-
free survival (1.3 mo vs. not reached; P < 0.001), shorter
median clinical or radiologic progression-free survival
(2.3 mo vs. not reached; P < 0.001), and shorter median
overall survival (10.6 mo vs. not reached; P = 0.006) [38].

Although these are exciting early data, overall, this study
requires confirmation by a large scale effort with biopsy
correlation. If confirmed, the presence of AR-V7 in CTCs
could serve as a predictive biomarker to help clinicians
decide which patients are likely to benefit from further
hormonal therapy. Of note, a recent study by the same
group showed that the presence of AR-V7 does not confer
resistance to cabazitaxel chemotherapy, implying that AR-
V7 expression in CTCs may serve as a predictive biomarker
for response to hormonal therapy, as opposed to a more
basic marker of poor prognosis [85].

This compelling evidence suggesting AR-V7 may confer
resistance to available hormonal therapies has led to
research attempting to identify agents that specifically target
splice variants or the AR NTD. Unfortunately, the NTD
proves to be a challenging target for drug design given its
flexibility with high degree of intrinsic disorder. The AF-1
region of the NTD is known to contain most AR transcrip-
tional activity and characteristically has collapsed disorder,
allowing for some secondary structure without a stable
tertiary structure [86]. The small molecule inhibitor EPI-001
was found to interact with the AF-1 region, thereby
attenuating its activities by inhibiting protein-protein inter-
actions with AR, and reducing AR interaction with the
androgen-response elements on its target genes [86,87].
Preclinical studies have demonstrated that EPI-001 inhibits
AR-dependent proliferation in human PCa cells. In mice
models with PCa xenografts, EPI-001 injections blocked the
growth of the xenograft regardless of the presence of
androgen. However, it had no effect on models lacking
functional AR, suggesting that his drug only affects cells
dependent on AR for growth and proliferation [86,88].
Challenges in translating this agent from the laboratory
into an orally bioavailable agent has hampered its develop-
ment and, therefore, at this time, clinical trials are not yet
underway.

Specifically targeting AR-V7 has become an area of
interest. As mentioned previously, there is exciting evidence
to suggest galeterone may target AR-V7 expressing tumors
possibly by potentiating ubiquitin-mediated degradation of
the variant AR protein [37]. A study shows that niclosa-
mide, an antihelminthic teniacide, may be a potent inhibitor

of AR-V7 in PCa cells by significantly down-regulating
AR-V7 protein expression through increased protein deg-
radation in a proteasome-dependent pathway [89]. The
study demonstrated compelling evidence that niclosamide
inhibited PCa growth in in vitro and tumor growth in vivo
models. Furthermore, it was shown that this strategy may
overcome or minimize enzalutamide resistance. Using a
combination of enzalutamide with niclosamide in preclinical
models was shown to significantly inhibit enzalutamide-
resistant tumor growth. This work needs further validation
in clinical trials, but appears promising in an era of
enzalutamide and abiraterone-resistant CRPC. Other AR
splice-variant inhibitors are currently in development [83].

CAG repeats

Repetitive CAG sequences are present in exon 1 of the
AR. They are highly polymorphic and encode long gluta-
mine homopolymeric amino acid chains in the NTD of the
AR gene [90]. Shorter CAG repeat length has been
observed to correlate with a higher androgen binding
affinity and higher receptor transactivation activity
[90,91]. Based on this finding, it has been suggested that
CAG repeat length may correlate with clinical outcomes.
Specifically, in recent years there has been a debate
regarding whether there is a clear association between the
number of CAG repeats within the AR and an increased risk
of developing PCa. A large review of case series performed
in 2004 to include over 4,000 patients by Zeegers et al. [92]
suggested a correlation between short CAG repeat length
and increased risk of developing PCa. Since then, 2 large,
nested case—control studies from the Prostate Cancer
Prevention Trial (2010 and 2014) did not find any signifi-
cant associations between CAG repeat length and the risk of
developing PCa [93,94]. Interestingly, some studies did
identify consistent CAG repeat lengths within ethnic groups
[90,95,96], with work showing that African—American men
have shorter CAG repeats. These short CAG repeats are
more often associated with higher transactivational func-
tion, which could offer an explanation for the increased
incidence of PCa in this population. Short CAG repeats in
Japanese men appear to have prognostic value in predicting
longer responses to hormonal therapy [90,96]. Other studies
have been performed attempting to determine whether CAG
repeat length would be a valuable biomarker or prognostic
tool, however, to date, no significant correlation has been
established [97-99]. What the effect of CAG repeat length
is at the time of castration resistance, and whether this
influences either response to subsequent hormonal therapy,
or the development of AR splice variants is unknown, but
may be a future research direction.

Southwell et al. suggested that AR mutations may alter
the inverse relationship between CAG repeat lengths and
the transactivation in a minor way, which increased N/C-
terminal interactions. The common T877A mutation is
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known to increase LBD promiscuity allowing more ligands
to activate AR. When this mutation is present, this study
found that men with shorter CAG repeats no longer have
the transactivation pattern otherwise associated with the
mutation [100]. This suggests that certain mutations within
the AR could possibly override the effect AR-CAG repeat
length may have in PCas. Further studies to identify the
presence of mutations and AR-CAG repeat length may help
reveal a more conclusive association of CAG repeat with
incidence of PCa or to be used as a possible prognostic tool
in the presence of certain mutations. Although the data
appear inconclusive at this time, with some studies showing
suggestive associations, some refuting these associations,
and some simply equivocal [90,92-96,101,102], further
investigation may be warranted.

Conclusion

Huggins and Hodges radically changed the field of PCa
when they first described androgens as the major drivers of
PCa more than 75 years ago. Although our understanding of
PCa and the role of the AR has substantially changed since
then, the AR continues to remain a major driver in the
growth and survival of PCa, including in CRPC. This is
supported by the numerous mechanisms of resistance that
tumors develop to maintain AR signaling despite more
effective and potent ADTs. Clinically, novel AR-targeting
therapy, including abiraterone acetate and enzalutamide,
have resulted in excellent response rates when used in
conjunction with ADT at the time that CRPC develops.
However, these agents are not a cure for PCa, and recent
data has shown significant cross-resistance, implying shared
mechanisms of resistance (e.g., splice variants). Currently, a
number of clinical trials are ongoing to determine whether
there is improved efficacy when these AR-targeting ther-
apeutics are used in combination rather than sequentially
as monotherapy, and to establish reliable predictive
biomarkers that can guide treatment decisions. Novel
therapies, such as galeterone, EPI-001, and niclosamide,
which exploit established mechanisms of resistance,
would hopefully translate to potent therapies in the
clinical setting. Although there is mounting evidence that
CRPC may develop neuroendocrine differentiation to
function in an AR-independent manner [103], there is
some data to suggest that AR expression is persistent even
in these tumors [104], and further studies need to be done
to determine the sensitivity of neuroendocrine-like PCa
tumors to AR manipulation. Although we have made
remarkable progress in further understanding the biology
of PCa since the discovery of its androgen dependence 75
years ago, the ever-evolving nature of PCa poses both
challenges and opportunities to researchers trying to
understand new mechanisms of resistance and develop
novel therapeutics.
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