
REVIEW

Mechanisms regulating T-cell infiltration and activity
in solid tumors

E. Lanitis1, D. Dangaj1, M. Irving1 & G. Coukos1,2*

1The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges; 2Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne,
Switzerland

*Correspondence to: George Coukos, Director, Department of Oncology, Chief, Immuno-Oncology Service, University Hospital of Lausanne (CHUV); Director, Lausanne Branch,
Ludwig Institute for Cancer Research, Rue du Bugnon 46-BH09-701, CASE POSTALE 5, 1011 Lausanne, Switzerland. Tel: þ41 21 314 06 27; E-mail: george.coukos@chuv.ch

T-lymphocytes play a critical role in cancer immunity as evidenced by their presence in resected tumor samples derived from
long-surviving patients, and impressive clinical responses to various immunotherapies that reinvigorate them. Indeed, tumors
can upregulate a wide array of defense mechanisms, both direct and indirect, to suppress the ability of Tcells to reach the tumor
bed and mount curative responses upon infiltration. In addition, patient and tumor genetics, previous antigenic experience, and
the microbiome, are all important factors in shaping the T-cell repertoire and sensitivity to immunotherapy. Here, we review the
mechanisms that regulate T-cell homing, infiltration, and activity within the solid tumor bed. Finally, we summarize different
immunotherapies and combinatorial treatment strategies that enable the immune system to overcome barriers for enhanced
tumor control and improved patient outcome.
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Introduction

Retrospective studies of most solid tumor types have demon-

strated a correlation between the presence of tumor-infiltrating

lymphocytes (TILs) and progression-free survival as well as over-

all patient survival, thus pointing to a central role for T cells in

tumor immunity [1–5]. This assertion is further supported by the

durable responses of some patients to high-dose interleukin-2

(IL-2) as well as to the adoptive transfer of autologous ex vivo ex-

panded TILs (TIL therapy), both of which were pioneered for the

treatment of advanced metastatic melanoma patients [6–8].

More recently, the advent of checkpoint blockade therapy with

monoclonal antibodies (mAbs) targeting cytotoxic T lymphocyte

associated protein 4 (CLTA-4), as well as the programmed cell

death protein 1 (PD-1) and its ligand (PD-L1), has enabled T

cell-mediated tumor regression for a range of malignancies

including melanoma [9, 10], ovarian [11], lung [12], bladder

[13], renal-cell carcinoma [14], Hodgkin’s lymphoma [15], as

well as colorectal, gastrointestinal and endometrial cancers hav-

ing DNA mismatch repair defects [16].

PD-1 inhibition alone leads to response rates in about 20%–

30% of patients with different solid tumor types, but when com-

bined with CTLA-blockade, which promotes T-cell priming [17],

this can increase up to 57% for advanced metastatic melanoma

[18]. Why some patients respond to checkpoint therapy and

others not remains unclear, but the existence of TILs at the onset

of therapy is a key factor. Responses to PD-1 inhibition are highly

correlated to the presence of CD8þ T cells at the invasive margin

and within the tumor bed [19], which define the so-called hot

tumors, but not all patients with inflamed tumors respond to

checkpoint blockade (Figure 1A and B). There also exist tumors

that exclude T cells (Figure 1C), and others that are completely

devoid of immune infiltrate, often referred to as cold tumors, or

immune deserts (Figure 1D) [20, 21]. The immunoscore, first

proposed to classify malignant colorectal tumors based on their

level of immune infiltrate, is emerging as a more important pre-

dictor of cancer progression than tumor stage or its pathological

grade [3]. Moreover, the presence of tertiary lymphoid structures

(TLS) in lung tumors [22], characterized by the association of T

cells, mature DCs, a follicular center with follicular DCs, prolifer-

ating B cells, and high endothelial venules, is favorable for patient

prognosis [23], and increased densities of TLS are associated with

increased CD4þ T-cell receptor (TCR) repertoire clonality [24].

Elucidating factors regulating T-cell infiltration and function-

ality once within the tumor is critical for the development of
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novel combinatorial strategies conferring improved patient re-

sponse rates to immunotherapy. Here, we review our current

understanding of the mechanisms leading to T-cell inflamed ver-

sus noninflamed tumors, forces regulating TIL function in the

tumor microenvironment (TME), and combinatorial therapies

being used to re-program the TME and enhance T-cell homing

and activity.

Patient and tumor intrinsic properties that

govern T lymphocyte responses against

tumors

T cells are educated in the thymus to distinguish self from nonself

peptides in the context of major histocompatibility complex

(pMHC) molecules; T cells having TCRs of either too low or too

high affinity for pMHC are eliminated during positive and

negative thymic selection, respectively [25]. Having passed this

process, naı̈ve T cells circulate secondary lymphoid tissues with

the quest of being primed by an activated antigen-presenting cell

(APC) displaying cognate pMHC. In the context of cancer, this

may take place in tumor-draining lymph nodes (TdLN) by den-

dritic cells (DCs) that have already sampled the tumor and been

activated (Figure 2). Several groups have linked the presence of

CD8þ TILs to a type I interferon (IFN) signature [26, 27] result-

ing from of a subset of CD103þ CD8þ DCs driven by the tran-

scription factor Batf3 in the TdLNs [28–30]. Moreover,

the activation of these DCs appears to be largely mediated

through sensing of cytosolic DNA through the cGAS-Sting path-

way [31–33]. Such DCs represent �1% of the total tumor infil-

trate [30]. Indeed, DCs isolated from cancer patients are

oftentimes functionally impaired, having low expression levels of

the costimulatory ligands CD80, CD86, and CD40, as well as the

cytokine IL-12, while upregulating genes associated with T-cell

inhibition including PD-L1, T-cell immunoglobulin mucin

HOTTUMOR-TIL Presence &
Responsiveness

A B

C D

TIL Presence & Ignorance

COLD TUMOR-Immune DesertT-Cell Exclusion

CD8+ T-cell

Dendritic cell

Macrophage

Tumor cells

Chemokines

T regulatory cell

T-cells receptor

peptide-MHC

Perforin/Granzyme

Figure 1. Classification of tumors based on their immune cell infiltrate. Tumors infiltrated by T cells are often referred to as hot tumors. It has
been observed, however, that some T-cell-inflamed tumors respond to checkpoint blockade therapies (A) and others not (B). There also exist
tumors for which immune cells are excluded at the periphery (C), as well as tumors that are completely devoid of immune infiltrate, and hav-
ing a so-called desert immune landscape (D).
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receptor 3 (Tim-3), interleukin 10 (IL-10), and indoleamine 2–3,

dioxygenase-1 (IDO-1) [34].

A variety of tumor antigens can be recognized by T cells.

Examples include peptides derived from mutated proteins (i.e. neo-

eptiopes), tissue differentiation antigens, oncofetal antigens like car-

cinoembryonic antigen, oncogenic viral antigens such as from

human papilloma virus, cancer testis antigens (CTAs), and proteins

that are highly overexpressed in tumor cells such as tyrosinase in

melanoma [35]. Because many of these antigens are self, tumor-

directed TCR may be of lower affinity than those directed against

viral epitopes, for example [36, 37]. An association between

neoepitope-specific T cells and sensitivity to checkpoint blockade, as

well as their abundance in melanoma TIL therapy, has led to specu-

lation that neoepitopes are critical for tumor immunogenicity [38–

42]. Moreover, acquired resistance in non-small cell lung cancer

(NSCLC) patients to immune checkpoint blockade has recently

been associated with neoantigen loss through the elimination of

tumor subclones or through the deletion of chromosomal regions

[43]. Interestingly, however, comparable levels of differentiated,

germline, and mutated antigens are expressed by T-cell inflamed

and noninflamed melanoma tumors [44]. In addition, Merkel-cell

carcinoma patients showed similar responses to PD-1 blockade re-

gardless of whether their cancer had been UV-induced and was

highly mutated, or was caused by Merkel cell polyomavirus and had
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Figure 2. An overview of the steps and variables driving T-cell recruitment, infiltration, and activity in tumors. Both patient and tumor intrin-
sic properties can affect anti-tumor T-cell responses. Examples include previous immune experience of the patient and mutations of the
tumor cells (A). Early innate immune activation of DCs that produce type I IFN is critical (B) for the recruitment and priming of T cells in the
tumor draining lymph nodes (TdLNs) (C). T cells activated in the TdLNs must chemotactically navigate an aberrant tumor vasculature and
overcome various barriers in the stroma to gain entry into the tumor bed (D). Once in the tumor, T cells must be able to recognize and bind
to specific pMHC complexes and then begin effector functions such as IFNc secretion and killing (E). The secretion of IFNc by activated T
cells will trigger a series of events in the tumor including the up-regulation of PD-L1, while the development of tertiary lymphoid structures
in the tumor can help promote local adaptive immunity (F). Barriers at many of these steps can potentially abolish T-cell homing, infiltration
and/or activity in the TME.
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a lower mutational burden [45, 46], thus underlying the importance

of the quality of the epitope in the generation of robust TILs.

TCR-pMHC binding is the central event in mounting an anti-

tumor T-cell response, but what is presented and what can be seen

by the immune system varies from patient to patient (Figure 2).

The Human Leukocyte Antigen (HLA) genes (encoding MHC) are

highly polymorphic [47]. Moreover, the circulating TCR reper-

toire diversity and frequency, generated from V(D)J recombin-

ations in the thymus, depends upon both patient genetics and

previous antigenic exposure [48]. A common cause of poor

tumor immunogenicity is the loss or down-regulation of HLA

class I [49–51], as well as of the tumor antigen processing and pres-

entation machinery in tumor cells, due to either genetic or epigen-

etic alterations [52]. HLA class I alterations are defined as being

soft, if they are regulatory in nature, including the downregulation

of genes encoding the HLA complex or components of the antigen

processing/presentation machinery, and hard if they involve muta-

tional events and chromosomal abnormalities affecting the HLA

class I heavy chain or b2m genes [51]. In the absence of pMHC ex-

pression T cells are ignorant to tumors.

An inverse correlation was recently demonstrated between acti-

vation of the WNT/b-catenin signaling pathway and CD8a and

PD-L1 expression in non-T-cell inflamed metastatic melanoma

[53]. In a murine model such tumors were shown to have reduced

expression of the chemokine CCL4, they were nonresponsive to

checkpoint blockade, and they lacked CD103þ CD8þ batf3þ DCs,

indicating that a defect in early innate immune priming caused the

lack of T-cell infiltrate. PTEN loss-of-function mutations [54]

have also been shown to limit T-cell recruitment. Notably, the

BRAFV600E oncogene that can be found in metastatic melanoma

gives rise to a highly glycolytic phenotype [55] due to dysfunc-

tional oxidative phosphorylation, thereby limiting glucose avail-

ability to T cells and diminishing effector capabilities. In addition,

aberrant epidermal growth factor receptor (EGFR)/RAS signaling

has been shown to suppress CCL27 production, thus inhibiting

T-cell homing and accelerating tumor outgrowth [56]. In contrast,

mutations in BRCA1/2 [57], and POLE3 [58], as well as microsat-

ellite instability [59], all of which result in genomically unstable

tumors, are characterized by a higher T-cell content. Finally, im-

mune priming of DCs, T-cell activation, and responses to cancer

therapy, including CpG oligonucleotide, oxaliplatin [60], cyclo-

phosphamide [61], and PD-L1 [62] or CTLA-4 [63] blockade, are

influenced by the commensal gut microbiota profile of the patient.

T-cell homing and overcoming stromal

barriers

Chemokine networks for T-cell tumor homing

Chemokines can be functionally classified as being homeostatic

or inflammatory, corresponding to expression that is constitutive

or inducible, respectively. Homeostatic cytokines regulate T-cell

trafficking during thymic selection, as well as the physiological

movement of immune cells (i.e. chemokinesis) through second-

ary lymphoid organs and peripheral tissues under routine condi-

tions of immune surveillance. Inflammatory chemokines, on the

other hand, play a key role in the recruitment of immune cells to

peripheral tissue in response to antigenic challenge [64, 65].

Naı̈ve T cells are supported by chemokines CCL19, CCL21, and

CXCL12 secreted by fibroblast reticular cells and stromal cells, as

well as by lymphocyte function-associated antigen-1 (LFA-1)

interactions with intercellular adhesion molecule-1 (ICAM-1) on

the surface of DCs [66–68]. Activated and memory T cells upre-

gulate a variety of chemokine receptors such as CCR5 and

CXCR3 [69–73] to enable rapid chemotaxis toward inflamed re-

gions to detect and respond to infected or transformed cells.

Chemokines regulate the trafficking of immune cells into

tumors and have been implicated in tumor development, progres-

sion, and angiogenesis [74]. In melanoma, the presence of TILs has

been shown to correlate with the expression of CCL2, CCL3,

CCL4, CCL5, CXCL9, and CXCL10 [26, 75]. The IFN-gamma

(IFNc)-inducible chemokines CXCL9 and CXCL10, for example,

which can be secreted by local myeloid and stromal cells, recruit

CXCR3þ memory CD8þ T cells [76, 77] and are strongly associ-

ated with a Th1 immune response [72, 78–83], as well as favorable

outcome to chemotherapy and immunotherapy [79, 84]. In add-

ition, CXCR3 signaling contributes to the transendothelial migra-

tion of T cells into the tumor bed [85] (Figures 2 and 3).

Most tumors, however, alter local chemokine networks to at-

tract immune-inhibitory, tumor-promoting infiltrate like

tumor-associated macrophages (TAMs) [86, 87], myeloid-

derived suppressor cells (MDSCs) [74, 88–90], and regulatory

T cells (Tregs) that are associated with poor patient prognosis

[91–93]. CCL28, for example, a chemokine ligand that is upregu-

lated in response to hypoxia, recruits Tregs that in turn promote

tumor tolerance and angiogenesis [94]. CXCL12 recruits

CXCR4þ stromal cells [74], and promotes growth, metastasis (to

CXCL12-expressing organs), and angiogenesis. CXCR4 blockade

by siRNA or pharmacologic inhibition slows tumor growth by

increased apoptosis and reduces the metastatic potential [95, 96].

Alternatively, tumors such as ovarian can use epigenetic mechan-

isms to silence the T-cell attracting chemokines CXCL9 and

CXCL10 [97]. In addition, nitrosylation by reactive oxygen spe-

cies (ROS) in the TME abrogates the ability of CCL2 to attract

T cells [98], while altered proteolytic processing of CXCL11 im-

pairs its binding-induced signaling, thereby reducing the recruit-

ment of CXCR3þ effector T cells [99].

The tumor vasculature barrier

Tumors rely upon a vasculature that is tortuous, leaky and lacking

proper pericyte coverage, to supply themselves with oxygen and nu-

trients as well as for waste removal (Figure 3). These aberrant vessels

are also the gateway for immune infiltrate that must adhere to the

endothelium by chemokine-dependent and -independent mechan-

isms [100]—lymphocytes require integrin interactions with

endothelial cell adhesion molecules to extravasate into the tumor

[101, 102]. Several inhibitory mechanisms limiting T-cell transendo-

thelial migration have been described [103]. For example, the down-

regulation of ICAM-1 by the proangiogenic vascular endothelial

growth factor A (VEGF-A) and basic fibroblast growth factor [104,

105], as well as overexpression and signaling via the endothelin-1/

endothelin B-receptor axis [106–108], help tumors evade T-cell at-

tack [109]. The upregulation of Fas ligand in response to tumor-

derived factors including VEGF-A, IL-10, and prostaglandin E2

(PGE2), specifically induces apoptosis of Fas-expressing CD8þ
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T cells while leaving Tregs unharmed [110, 111]. Finally, tumor

endothelial cells can upregulate a variety of inhibitory receptors such

as B7-H3 [112–114], PD-L1 and PD-L2 [115, 116], Tim-3

[117, 118] and B7-H4 [119], as well as secrete soluble inhibitory

molecules including IL-6, PGE2, IL-10, and TGFb [120–123]. In

addition to the vasculature, other components of the tumor stroma,

including its dense matrix [124] and cancer-associated fibroblasts

[125], can suppress T-cell function and block their entry into the

tumor bed. There is now a strong body of evidence that cross-talk

between tumor cells and its stroma influences cancer progression

and metastasis [126].

Immunometabolic obstacles in the tumor bed

Immunosuppressive tumor cells and
immune infiltrate

T cells that successfully home and extravasate via the vasculature

face further challenges to both their function and survival in the

tumor bed (summarized in Figure 3). Tumor cells can upregulate a

variety of inhibitory receptors like PD-L1, and secrete molecules

including IL-10, TGFb [127], and PGE2 [128, 129], that can directly

block T-cell function and/or attract and activate immunosuppres-

sive immune cells including Tregs, MDSCs, TAMs, and tumor-

associated neutrophils (TANs) [130]. Notably, inhibitory mechan-

isms like PD-L1 and IDO-1 expression are adaptive rather than

tumor cell-intrinsic as they are induced by IFNc secreted by acti-

vated T cells [131, 132]. There is also co-operative action amongst

suppressive immune cells. For example, MDSCs in addition to dir-

ectly inhibiting effector T cells can also induce Tregs [130]. Tregs in

turn produce a range of inhibitory molecules such as adenosine via

CD39/CD73 [133], compete with effector T cells for IL-2 [134], and

can abrogate DC maturation and activity [135]. Moreover, many

immunosuppressive molecules are pleiotropic. As an example,

PGE2, a small molecule derivative of arachidonic acid produced by

the inducible cyclooxygenase 2 enzyme, is produced by both tumor

cells and macrophages and can inhibit DC maturation, and select-

ively suppress Th1, cytotoxic T lymphocytes, and NK-mediated im-

munity while promoting Th2, Th17, and Treg responses [128, 129].

Aberrant Tumor Vasculature
- adhesion molecule down-regulation,
FasL upregulation, inhibitory receptors 
and secreted molecules
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- chemokines produced that attract 
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Suppressive Molecules
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 PGE2, etc. Suppressive Receptors

- PD-L1/L2, VISTA, etc. 
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- Tregs, MDSCs, TAMs, TANs etc.
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Figure 3. Barriers to T-cell activity in solid tumors. T cells that are able to overcome chemokine mismatches and the aberrant vasculature,
and have gained entry into the tumor bed, will secrete IFNc upon activation that can trigger the upregulation of immunosuppressive
mechanisms like PD-L1 and IDO-1. Immunosuppressive immune cells can also be chemotactically attracted to the tumor by chemokines
expressed in response to hypoxia that in turn express inhibitory receptors and secrete a range of molecules that can block effector T-cell
activity as well as DC maturation, and/or promote the activities of suppressor cells. Examples of inhibitory immune infiltrate include
MDSCs, Tregs, TANs, and TAMs. Examples of suppressive molecules include VEGF, IL-10, TGFb, adenosine, and PGE2. Tumor cells can also
down-regulate pMHC expression so that they can no longer be detected by T cells. Metabolic competition for glucose and amino acids,
as well as toxic metabolites, hypoxia, and acidity of the TME can also diminish effector T-cell function. In response to chronic activation in
the absence of sufficient T-cell co-stimulation, a variety of T-cell intrinsic inhibitory mechanisms are upregulated. T cells in the TME are
often anergic or exhausted.
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Chronic antigen exposure in the absence of
sufficient T-cell co-stimulation

Another important challenge faced by T cells in the TME is

chronic antigen exposure in the absence of sufficient co-

stimulation. As previously mentioned, DCs in the tumor are

oftentimes immature and lacking in ligands CD80 and CD86

[136] which must be engaged by CD28 to provide signal 2 of

T-cell activation in order to avoid tolerance or the induction

of anergy [137]. TILs are typically characterized by high ex-

pression levels of one or more inhibitory receptors including

PD1, CTLA-4, lymphocyte activation gene 3 (LAG-3), Tim-3,

T-cell Ig, and ITIM domain (TIGIT) [138], and/or B- and T-

lymphocyte attenuator [139], which relay signals to dampen

or block T-cell function [136]. In this context, inhibitory

intracellular signaling molecules are also upregulated includ-

ing the phosphatase SHP-1, a negative regulator of T-cell sig-

naling [140, 141], the ubiquitin ligase Cbl-b which negatively

regulates activation signals derived from the TCR and co-

stimulatory molecules and increases the sensitivity of effector

T cells to Treg inhibition [142], and the enzyme diacylglycerol

kinase which attenuates the production of effector cytokines

including IL-2 and IFNc as well as T-cell proliferation [143].

Also upregulated is the transcription factor Ikaros, which im-

poses a barrier to CD8þ T-cell differentiation by restricting

autocrine IL-2 production [144], along with T-bet, EOMES,

and BLIMP1, which are implicated in T-cell terminal differen-

tiation and exhaustion [145].

Metabolic competition and harsh living conditions

Tumors present challenging living conditions to T cells as they

are typically hypoxic, acidic, nutrient depleted and they accu-

mulate toxic metabolites (Figure 3). Tumor cells use the process

of aerobic glycolysis despite sufficient oxygen to undertake oxi-

dative phosphorylation, the so-called Warburg effect, to sup-

port their high energy and biosynthetic needs [146, 147]. In

doing so they deplete nutrient supplies (glucose, glutamine,

etc.) also required by effector T cells [148, 149], and they pump

high levels of metabolites into the TME including lactate from

the fermentation process that can cause T-cell dysfunction

[150–152]. In addition, tumors limit T-cell activity by produc-

ing enzymes including arginase-1 (Arg-1) and IDO-1, which de-

grade the essential amino acids arginine and tryptophan,

respectively [153]. T cells deprived of L-arginine downregulate

CD3f chain expression and go into cell cycle arrest [154–157].

In the absence of tryptophan, T-cell responses are also blunted,

but the effects of IDO-1 are compounded by tryptophan deriva-

tives like kynurenine, which can further block T-cell prolifer-

ation and promote Treg activity [158–161]. In addition,

engagement of PD-1 and CTLA-4 by their respective ligands can

attenuate aerobic glycolysis of activated T cells by inhibition of

the PI3K/Akt/mTOR pathway [162, 163]. Thus, there is an im-

portant interplay between the metabolic status of T cells and

checkpoint pathways (i.e. immunometabolism) that is a critical

consideration in the development of personalized combinator-

ial immunotherapy.

Therapeutic interventions

T cells play a critical role in tumor immunity but in some in-

stances they are unable to reach and penetrate the tumor bed, or

they gain access but their activity is inhibited by a plethora of im-

munosuppressive mechanisms. Checkpoint blockade as a single

intervention is successful in a proportion of patients with solid

tumors [164], while others do not respond to this therapy despite

having T-cell-inflamed tumors. The underlying mechanisms of

therapeutic resistance remain unclear, but are likely related to ex-

cessive suppression by a number of additional immunometabolic

barriers, along with patient and tumor intrinsic properties as pre-

viously described. Next, we consider different clinical treatments

that can either directly promote T-cell activity, and/or that help

to re-program the TME to potentiate T-cell homing and anti-

tumor activity.

Adoptive T-cell transfer

Arguably the most direct means of promoting T-cell presence in

the tumor bed is by adoptive cell therapy (ACT) for which there

are two main approaches. The first, as previously described, is the

ex vivo expansion and reinfusion of autologous TILs into a lym-

phodepleted patient, along with high-dose IL-2 [165].

Traditionally, the TILs are cultured with high levels of IL-2 and

then rapidly expanded in the presence of anti-CD3 Ab and allo-

geneic feeder cells prior to transfer [166]. In order to promote a

less differentiated, central memory (TCM) phenotype, T cells have

been cultured with artificial APCs in the presence of the alterna-

tive common gamma chain cytokine IL-15, for example, and

shown to mediate objective clinical responses [167, 168]. In the

second approach to ACT, peripheral blood T cells can be gene-

engineered to express a tumor-directed TCR [169] or a so-called

chimeric antigen receptor (CAR) [170].

CARs are synthetic receptors, typically comprising a tumor

antigen-specific single chain Ab fragment (scFv) fused to a linker,

transmembrane region, and various combinations of endodo-

mains associated with T-cell activation; CD3f is used to provide

signal 1, and one or more co-stimulatory endodomains, such as

from CD28 or 4-1BB, are included for signal 2 [171]. Unlike

TCRs that are HLA-restricted, CARs can bind virtually any cell

surface-expressed molecule [172] and they represent a critical

treatment strategy against cold tumors having defects in antigen

presentation by MHC. While CD19-targeted CAR T cells [173]

have demonstrated unprecedented clinical results for the treat-

ment of several B-cell malignancies, including up to 90% com-

plete response rates in acute lymphoblastic leukemia patients

[174], solid tumors remain an important challenge. One limita-

tion is identifying tumor-restricted antigens to ensure that CAR

T cells do not cause on-target/off-tumor toxicity [175–177]. To

enhance safety, a variety of suicide genes [178], split signaling

approaches [179], and novel druggable intracellular on-switches

[180], have been developed. Probably the greatest challenge fac-

ing CAR T cells, however, relates to overcoming the same barriers

to T-cell homing, engraftment, and function that endogenous T

cells face [126, 156, 181, 182]. Indeed, CAR therapy can be

enhanced by checkpoint blockade [183, 184], as well as by various

engineering strategies [185] such as the co-expression of the
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chemokine receptors CCR4 and CCR2 [186, 187], IL-12 [188],

and CD40L [189].

Immune checkpoint blockade

As previously described, checkpoint blockade, first with anti-

CTLA-4 [9] and then with anti-PD1/PD-L1 has brought impres-

sive responses for advanced metastatic melanoma patients, and

clinical trials for several other cancer-types have yielded similar

results [9, 11, 12–16, 164, 190–193] . While CTLA-4 blockade

reduces the activation threshold required for T-cell priming

[164], PD1/PD-L1 blockade can reverse, at least in part and for

some T-cell subsets [194, 195], immune defects such as exhaus-

tion [196, 197], thus enabling synergy when the treatments are

combined [18]. Abs against other inhibitory receptors including

LAG-3, TIGIT, Tim-3, and VISTA have shown promise in pre-

clinical models, both as monotherapies and in various combina-

torial strategies [138, 198–200]. Tim-3 and LAG-3 blockade are

currently being explored in early phase clinical studies

(NCT02817633, NCT01968109), alone or in combination with

anti-PD1 mAb, for the treatment of solid tumors.

Agonistic mAbs targeting T cells

Insufficient co-stimulation in the TME can cause critical T-cell

dysfunction, but the provision of agonistic Abs of the tumor ne-

crosis factor receptor superfamily (TNFRS) helps to reverse this

phenomena. Such agonistic Abs have been shown to enhance

T-cell effector function, proliferation and survival, as well as

boost memory CD8þ T-cell differentiation and overcome Treg

suppression [201–203]. In preclinical models synergy has been

demonstrated with vaccination, checkpoint blockade, and ACT

[202, 204, 205]. A phase 1 clinical trial with an anti-4-1BB mAb

demonstrated activity (NCT00309023), but a follow-up phase 2

study was terminated due to toxicity. Lower doses are now being

assessed in combination with PD1 blockade (NCT02253992).

Agonistic anti-OX40 mAb has been assessed on its own

(NCT01644968), and is currently being tested in combination

with either anti-CTLA-4 or anti-PD1 (NCT02205333). Agonistic

mAbs targeting CD27 and glucocorticoid-induced TNF-related

protein (GITR; TNFRSF18) have shown efficacy in preclinical

models [206, 207] and have recently entered clinical trials.

Because agonistic mAbs targeting co-stimulatory receptors can

trigger systemic inflammation and toxicity in vital organs, dose

escalation and careful patient monitoring are critical.

Agonistic mAbs targeting APCs

CD40, another member of the TNFRS, is expressed broadly on

APCs including DCs, B cells and monocytes, as well as by nonim-

mune cells and a wide range of tumors [208, 209]. Agonistic Abs

targeting CD40 promote DC maturation and efficient cross-

presentation of antigen to T cells [210, 211]. In addition, they can

induce apoptosis of tumor cells and TAM conversion to M1-like

macrophages [212, 213]. Pre-clinical studies have demonstrated

synergy with chemotherapy, checkpoint blockade, vaccines, radio-

therapy (RT), and cytokine treatment [214]. Phase I clinical trials

of agonistic CD40-targeting mAbs in combination with gemcita-

bine have shown promising systemic immune responses in pancre-

atic cancer patients [215]. Agonistic anti-CD40 mAbs are currently

being tested in solid tumors as a monotherapy (NCT02482168),

and in combination with anti-PD1 mAb (NCT02304393).

Macrophage reprogramming

TAMs are highly immunosuppressive and Ab blockade of the re-

ceptor for colony stimulating factor 1 (CSF1), also known as

macrophage colony-stimulating factor (M-CSF), highly ex-

pressed by TAMs, can re-program them toward an M1 pheno-

type. These M1-like macrophages have enhanced antigen

presentation, promote stronger anti-tumor T-cell responses, and

synergize with checkpoint blockade [216]. MDSCs can also be

targeted by CSF1-R blockade to sensitize IDO-expressing tumors

to immunotherapy [217], and improve efficacy of RT in preclin-

ical models of prostate cancer [218]. A multicenter clinical trial

is ongoing to evaluate the impact of a CSF1-R inhibitor in

combination with anti-PD1 mAb in various solid tumors

(NCT02452424). Macrophage polarization to an M1 phenotype

has also been reported for TNFa treatment [219].

IDO-1 inhibition

Tumor cells compete with T cells for essential nutrients including

glucose and amino acids [150–152]. In addition, they can upregulate

IDO-1, an important immunomodulatory enzyme that catabolizes

tryptophan to kynurenine and 3-hydroxyanthranilic acid, in order

to inhibit T-cell activity and promote Tregs [158–161, 220]. IDO-1

inhibitors hold great promise in combination with chemotherapy,

RT, and immunotherapy [221] and are being assessed in the clinic

against many tumor types [222]. IDO-1 inhibition is currently being

clinically tested in combination with anti-CTLA-4 for metastatic

melanoma patients (NCT01604889). Previously, in combination

with anti-PD1, it led to objective response rates of 53% for unresec-

tabe stage 3 or stage 4 melanoma patients (NCT02073123).

DC vaccines

DC vaccines can be used to enhance tumor antigen presentation

to, and priming of, T cells. For this therapy, DCs are generated ex

vivo and pulsed with specific peptides, protein or whole tumor lys-

ate, or transfected with RNA encoding tumor-specific epitopes

[223], before being re-infused into the patient. We have combined

whole tumor lysate DC vaccines with anti-VEGF mAb for the

treatment of ovarian cancer (NCT01132014) [224, 225], while

others have treated patients with DC vaccines and checkpoint

blockade (anti-CTLA-4), and observed more durable responses for

the combination therapy than single agents [226]. More recently,

personalized DC vaccines have been developed with tumor-spe-

cific mutated epitopes [227], yielding diverse neoantigen specific

TCR repertoires in treated patients [228]. Finally, lipid carriers for

systemic RNA delivery (RNA-Lipolexes) to DCs have been recently

shown capable of inducing strong adaptive and type I IFN-

mediated innate immune responses [229]. This may be a powerful

approach for turning some cold tumors hot.

Immunogenic chemotherapy

Several cytostatic drugs including anthracyclines and oxaliplatin

promote the so-called immunogenic cell death (ICD) character-

ized the by secretion of damage-associated molecular patterns
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(DAMPS), the activation of DCs, and ultimately the recruitment

and activation of TILs [230, 231]. ICD is a multi-step process

including the release of find-me signals from apoptotic tumor

cells such as ATP, nucleotides and fractalkine, eat-me signals

from phosphatidylserine and calreticulin [232], and finally the re-

lease of danger signals from DAMPs like high-mobility group

box protein 1 (HMGB1) that act via pattern recognition recep-

tors including Toll-like receptors 2 and 4 expressed on DCs to en-

hance antigen presentation [233, 234]. ICD can also induce

digest me signals that enhance the capacity of caspases to cut and

release apoptotic antigenic fragments from tumor cells that can

be cross-presented by DCs to TILs via the class I-processing path-

ways. Finally, immunogenic chemotherapies can induce the ex-

pression of T-cell attracting chemokines including CCL5,

CXCL9, and CXCL10 [79], and have been shown to synergize

with checkpoint blockade therapy in an innate-immune sensing

dependent manner [235].

Oncolytic viruses

Oncolytic viruses (OVs), a new class of immunotherapy drugs,

promote anti-tumor responses through both direct tumor cell

killing and the induction of innate and adaptive anti-tumor im-

munity through ICD. In response to infection by OVs,

tumor cells release ROS and type I IFNs, and, upon subsequent

lysis, DAMPs and pathogen-associated molecular patterns.

Furthermore, the necrotic tumor cells provoke the spreading of

tumor-associated antigens and neoantigens that can be cross-

presented by DCs to TILs [236, 237]. OVs have been gene-

engineered to integrate immunomodulatory genes including

cytokines, chemokines, and T-cell costimulatory molecules

[238]. One of the most widely used cytokines is GM-CSF that can

promote the differentiation and recruitment of DCs into the

tumor bed and TdLNs [239]. Oncolytic virotherapy can promote

checkpoint blockade [240, 241]. In a phase 1b trial for melanoma

patients, the combination of Talimogene laherparepvec (T-VEC;

an OV engineered to express GM-CSF) with anti-CTLA-4 mAb

resulted in a 50% objective response rate with a tolerable safety

profile [242], and T-VEC plus anti-PD-1 mAb in a phase 1b/III

trial (NCT02263508) also provided clinical benefit, and a phase II

trial is planned (NCT02965716).

Targeting the tumor vasculature

Although anti-angiogenesis monotherapies have yielded only

modest survival benefit in the clinic, an important observation

that some of them can normalize the vasculature was made

[103, 243]. Tumor vasculature normalization describes a transient

state induced by the blockade of angiogenic signaling during which

the vessels are more permissive to tissue perfusion and delivery of

oxygen, drugs (e.g. chemotherapies), and Abs [244–247], as well as

T-cell infiltration following vaccination and ACT [248–250].

Normalization is characterized by the upregulation of the leuko-

cyte adhesion molecules ICAM-1 and VCAM-1 on tumor endo-

thelial cells [251] and has been reported for anti-VEGFR and anti-

VEGF-A mAbs (at low doses), various tyrosine kinase inhibitors

[252], ETBR blockade [109], vessel-targeted TNFa [219, 253–256],

and agonistic anti-4-1BB mAb [257]. More recently, the phenom-

ena of vascular promotion have been described [258]. Low-dose

cilengitide, verapamil, and gemcitabine have been combined, for

example, in the pre-clinical treatment of pancreatic cancer [259] to

increase tumor blood vessel density and leakiness, and decrease

hypoxia. Vessel promotion thereby confers improved drug deliv-

ery and decreased drug resistance, resulting in impaired tumor

progression and metastasis.

In the clinic, anti-angiogenic therapies have been shown to syn-

ergize with checkpoint blockade [260]. For example, anti-VEGF in

combination with CTLA-4 blockade conferred a disease control

rate of almost 70% in metastatic melanoma patients [261]. This

combination has been shown to upregulate ICAM-1 and VCAM-

1, as well as the production of various cytokines and chemokines,

including IL-1a, TNFa, and CXCL10, leading to increased

lymphocyte infiltration [262]. Anti-VEGF and anti-PD-L1 yielded

a 40% response rate in metastatic renal-cell carcinoma patients—

the combination therapy increased lymphocyte trafficking and

intra-tumoral MHC-I levels, and conferred gene-signatures associ-

ated with Th1 chemokines such as CX3CL1 [263].

Targeting the cancer epigenome

In addition to genomic mutations that directly effect tumorigen-

esis, mutations can occur in chromatin-regulating genes leading

to epigenetic abnormalities that cause cancer [264]. There are

two main categories of drugs for targeting the cancer epigenome,

broad reprogrammers that reverse genome-wide cancer-specific

gene expression patterns [265, 266], and targeted ones that are

directed against specific enzymes involved in epigenetic path-

ways. Broad reprogrammers include DNA methyltransferase in-

hibitors (DNMTi), histone deacetylase inhibitors (HDACi), and

inhibitors of the bromodomain and extra-terminal motif pro-

teins (iBETs). Targeted therapies have been developed, for ex-

ample, against the EZH2 H3K27 histone N-methyltransferase

that is activated by mutations in lymphomas [267, 268], and

against the tricarboxylic acid cycle genes IDH1 and IDH2 that are

mutated in gliomas and acute myeloid leukemia resulting in aber-

rant hypermethylation due to the production of a metabolite that

inhibits DNA and histone demethylation [269, 270].

DNMTi including 5-azacytidine and its deoxy derivative deci-

tabine (also known as 5-aza-20-deoxycytidine) have been shown

to upregulate tumor antigens including melanoma-associated

antigen 1 (MAGE1) and CTAs [271–273]. Moreover, DNMTi

treatment of tumor cells upregulates endogenous retroviral se-

quences that are sensed by the tumor cell-autonomous nucleic

acid sensing machinery causing type I IFN signaling, character-

ized by potent cytokine and chemokine production [274, 275]

and leading to enhanced tumor immunogenicity. The combin-

ation of DNMT1 and EZH2 inhibitors has been shown to sensi-

tize ovarian cancer to checkpoint blockade, release CXCL9 and

CXCL10 from epigenetic silencing, and improve the trafficking of

adoptively transferred T cells [97].

Radiotherapy

Low-dose RT is immunostimulatory and synergizes with im-

munotherapy to enhance anti-tumor responses by a variety

of mechanisms [276]. For example, it can induce ICD and the

release of DAMPs such as IFN I/II, which in turn promote DC

maturation and cross-presentation to T cells [277, 278].
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Furthermore, it can upregulate MHC and tumor antigens [279],

chemokine ligands including CXCL10 and CXCL16 [280, 281],

Fas [282], and proinflammatory cytokines such as IL-1b and

TNFa. In addition, it has been shown to inhibit Tregs [283],

upregulate adhesion molecules including ICAM-1, VCAM-1,

and E-selectin on tumor endothelial cells (i.e. normalize the

tumor vasculature) [281, 284–286], and promote macrophage

differentiation to an immunostimulatory iNOSþ/M1 phenotype

[287, 288], all of which support anti-tumor T-cell responses.

Several pre-clinical studies have demonstrated benefit in com-

bining local irradiation with checkpoint blockade [289–291], and

clinical trials are underway (NCT02298946, NCT02303990).

Notably, a phase 1 clinical trial treating advanced melanoma pa-

tients with RT and anti-CTLA-4 yielded only 18% partial re-

sponses, possibly due to PD-L1 upregulation [292, 293] and

suggesting that a regimen targeting both CTLA-4 and the PD1/

PD-L1 axis may be required [294]. Like chemotherapy, total

body irradiation can be used for intense lymphodepletion of can-

cer patients prior to ACT to improve T-cell engraftment [6]. RT

has also been shown to synergize with anti-OX40 and anti-CD40

agonistic Abs [222, 295], ACT [279, 283, 296], and vaccines [282,

297]. Many parameters must be optimized when combining RT

with immunotherapy including optimal dose, fractionation, the

treatment site, and timing, and results may vary depending on

several parameters including tumor burden and the degree and

types of immunosuppression [276, 298, 299]. Overall, RT, even at

low doses, is a very promising approach for TME re-

programming and helping to turn cold tumors hot.

Discussion

Concluding remarks

Some patients undergoing immunotherapy achieve robust and

durable anti-tumor responses as a result of reinvigorated T-cell

activity and changes to the immune balance in favor of protective

rather than suppressive activities. Elucidating why and how these

patients benefit from treatment, while others do not, is critical to

advance the field of immunotherapy. As we gain a deeper under-

standing of tumor escape mechanisms and how to reverse them,

and as technology advances enabling deep TME characterization

on a patient-to-patient basis, personalized, combinatorial immu-

notherapies will improve responses and lead to more patients

being cured.
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